УДК 552.5;550.93;551.87

РЕКОНСТРУКЦИЯ ИСТОЧНИКОВ СНОСА СРЕДНЕЭОЦЕНОВЫХ ОТЛОЖЕНИЙ ЗАПАДНО-КАМЧАТСКОГО ОСАДОЧНОГО БАССЕЙНА (ТИГИЛЬСКИЙ РАЙОН)

© 2016 г. А. И. Хисамутдинова¹, А. В. Соловьев^{1, 2}, Д. В. Рожкова³

¹Геологический институт РАН 119017 Москва, Пыжевский пер., 7; E-mail: geoaisulu@gmail.com ²ОАО "ДМНГ" 693004 Южно-Сахалинск, пр. Мира, 426; E-mail: fission-track@mail.ru ³ ОАО "Полиметалл" 680000 Хабаровск, ул. Флегонтова, 24; E-mail: duvir19@gmail.com Поступила в редакцию 06.04.2015 г.

В статье представлены результаты реконструкции источников сноса среднеэоценовых отложений Западно-Камчатского осадочного бассейна (Тигильский район). Установлено, что на раннем этапе формирования Западно-Камчатского осадочного бассейна, в эоцене, накопление терригенной толщи происходило в условиях межгорных впадин, сменившихся после трансгрессии мелководноморскими. По составу песчаники среднезоценовой снатольской свиты соответствуют грауваккам, а судя по геохимии песчаников, питающие провинции были расположены в пределах активной континентальной окраины и островной дуги. Минеральный состав тяжелой фракции свидетельствует о переменном доминировании в источниках сноса пород кислого и основного составов. Датирование обломочного циркона из песчаников снатольской свиты методом лазерной абляции показало, что возраст их широко варьирует. Наиболее значимым является пик, близкий по возрасту известково-шелочному магматизму Охотско-Чукотского вулканогенного пояса. Это позволяет реконструировать палеогеографию эоценового времени: основными источниками сноса обломочного материала служили расположенные на севере комплексы Охотско-Чукотского вулканического пояса и обрамлявшие бассейн с востока породы Ачайваям-Валагинской островной дуги. В качестве локальных источников обломочного материала выступали Утхолокский и Кинкильский вулканические пояса

DOI: 10.7868/S0024497X16040030

Реконструкция эволюции Западно-Камчатского осадочного бассейна в кайнозое представляет интерес как с точки зрения расшифровки геодинамических процессов в Охотоморском регионе, так и в связи с потенциальной нефтегазоносностью данной структуры. Наименее изученным является ранний, палеоцен-эоценовый этап эволюции Западно-Камчатского бассейна, когда произошло заложение и началось развитие прогиба. Стратиграфическое расчленение палеоценэоценовой толщи, характер ее дислоцированности, а также палеогеографические реконструкции для данного этапа дискуссионны [Гладенков и др., 1997; Богданов, Чехович, 2002; Белонин и др., 2003; Моисеев, Соловьев, 2010]. Важно отметить, что нижняя часть осадочного разреза является перспективной для обнаружения углеводородов - терригенные породы, накапливавшиеся в позднепалеоцен?-эоценовое время, являются потенциальными коллекторами [Белонин и др., 2003; Отчет ..., 1986].

Целью наших исследований, результаты которых приведены в статье, является реконструкция источников сноса обломочного материала, поступавшего в Западно-Камчатский бассейн в среднеэоценовое время. В работе приведены данные по минеральному и химическому составу, тяжелой фракции песчаников среднеэоценовой снатольской свиты, а также проанализирован U-Pb возраст и кристалломорфологические особенности обломочного циркона из этих песчаников. Комплексный анализ данных позволил реконструировать возможные источники сноса обломочного материала и предложить новые палеогеографические схемы.

ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ И ТЕКТОНИЧЕСКОЕ ПОЛОЖЕНИЕ ТИГИЛЬСКОГО ПОЛНЯТИЯ

Северо-восточная часть Азии является коллажем разновозрастных гетерогенных террейнов, причленившихся к Евразии в мезозое и кайнозое [Watson, Fujita, 1985; Зоненшайн и др., 1990; Stavsky et al., 1990; Worrall, 1991; Соколов, 1992; Тильман и др., 1992; Зинкевич и др., 1993; Парфенов и др., 1993; Чехович, 1993; Nokleberg et al., 1998; Объяснительная записка ..., 2000; Богданов, Добрецов, 2002; Богданов, Чехович, 2002].

Фундамент Западной Камчатки одни исследователи рассматривают как часть Охотоморской плиты [Ханчук, 1985; Гладенков и др., 1997; Копstantinovskaia, 2001], другие выделяют самостоятельную Западно-Камчатскую микроплиту [Объяснительная записка ..., 2000; Богданов, Чехович, 2002]. Охотоморская плита рассматривается как фрагмент древнего океанического плато [Богданов, Добрецов, 2002], а Западно-Камчатская микроплита расположена на коре континентального типа [Богданов, Чехович, 2002].

Фундаментами осадочного Западно-Камчатского осадочного бассейна служат терригенные комплексы Омгоно-Укэлаятского террейна и вулканогенно-кремнистые породы Ачайваям-Валагинской островной дуги. Омгоно-Укэлаятский террейн сложен позднемеловыми-среднеэоценовыми терригенными породами, выходящими на дневную поверхность на севере Камчатского полуострова и в пределах хребта Омгон. Терригенные отложения Омгоно-Укэлаятского террейна, согласно данным [Соловьев, Шапиро, 2008], являются турбидитами и контуритами, которые накапливались вдоль северо-восточной окраины Азии с мела до среднего эоцена.

Отложения Ачайваям-Валагинской островной дуги состоят из кремнистых и вулканических пород позднемелового возраста и выходят на дневную поверхность в эрозионных "окнах" в центральной и восточной частях Западной Камчатки. По данным [Соловьев и др., 2011], указанная островная дуга причленилась к окраине Азии в эоцене. С этого момента начинается формирование Западно-Камчатского бассейна осадконакопления.

Тигильское поднятие, в пределах которого располагаются изученные нами разрезы, расположено в центральной части Западно-Камчатского осадочного бассейна, имеет северо-восточное простирание, его протяженность составляет около 300 км, а ширина 100-120 км. В структурном плане поднятие образуют Увучинская антиклиналь и сопряженная с ней Майначская пологая синклиналь. Расположенная севернее Точилинская антиклиналь, согласно [Схема ..., 2001], относится к Кинкильскому прогибу. В строении поднятия участвуют складки брахиформного и линейного характера с углами падения крыльев до 30°-40°. Кайнозойская толща разбита системой разломов вдольструктурного и перпендикулярного положения. Центральная часть поднятия сложена меловыми и нижнепалеогеновыми отложениями

СТРАТИГРАФИЯ

В основании палеогенового разреза Тигильского поднятия выделяются три свиты (снизу вверх): хулгунская (конгломератовая), напанская (угленосная) и снатольская (преимущественно песчаная) [Карта ..., 1999; Решения ..., 1998]. Начиная со снатольской свиты и стратиграфически выше (включая плиоцен), в районе Тигильского поднятия существует единая последовательность кайнозойских отложений, стратотипические разрезы которых расположены вдоль побережья Охотского моря.

Нижняя часть Западно-Камчатского осадочного разреза формировалась в континентальных условиях — это небольшой мощности и ограниченные по площади тела конгломератов, накапливавшихся в межгорных впадинах и у подножий склонов [Григоренко, 2011]. Конгломераты несогласно перекрывают выступы мелового фундамента и слагают базальные части морских береговых разрезов (Майначский, Увучинский), а также выступы по берегам крупных рек (Квачина и Снатолвэем) (рис. 1). Возраст конгломератов, по дан-

1-8 – отложения Западно-Камчатского прогиба: 1 – четвертичные, 2 – N₂ (энемтенская свита), 3 – N₂-Q, вулкано-

генные, $4 - N_1^3$ (здесь и далее – снизу вверх: этолонская и эрмановская свиты), $5 - N_1^2$ (ильинская и какертская свиты),

Рис. 1. Схема геологического строения центральной части Западной Камчатки [Карта ..., 1999; Гладенков и др., 1997] с изменениями.

^{6 –} P₃- N¹ (вивентекская и кулувенская свиты), 7 – P₃ (аманинская, гакхинская и утхолокская свиты), 8 – P₁₋₂ (хулгунская, напанская, снатольская свиты и ковачинская серия); 9–10 – фундамент прогиба: 9 – К_{1–2} – флишоидные отложения автохтона (тальническая, майначская, кунунская свиты), 10 – К₂ – кремнисто-вулканогенные отложения аллохтона (ирунейская свита); 11 -стратиграфические контакты; 12 -разрывные нарушения (a - выделенные, δ предполагаемые, в – надвиг); 13 – расположение изученных разрезов: I–III – морские береговые разрезы (I – Точилинский, II – Майначский, III – Увучинский), IV–VI – по берегам крупных рек (IV – р. Рассошина, V – р. Половинка, VI – р. Белоголовая).

ЛИТОЛОГИЯ И ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ № 4 2016

ным [Гладенков и др., 1997; Буданцев, 2006], на основании находок флоры оценивался как палеоценовый. По нашим данным [Хисамутдинова и др., 2015], конгломераты, обнажающиеся в переделах морских береговых разрезов, более молодые. Нижний предел накопления грубообломочной толщи, обоснованный К-Аг датировками амфибола и биотита из галек конгломератов, соответствует эоцену.

На конгломератах хулгунской свиты залегает неравномерно развитая толща угленосных песчаников, переслаивающихся с конгломератами, относимых к напанской свите. Стратотип свиты описан в долине р. Снатолвэем [Гладенков и др., 1997], напанская свита в этом разрезе слагает ядро антиклинали с крутым падением крыльев. Обнажение разбито системой взбросов, по которым с тектоническим контактом на напанской свите залегают среднеэоценовые песчаники снатольской свиты. Угленосные песчаники формировались в континентальных условиях в пределах всхолмленной равнины с участками, временами затопляемыми морем [Григоренко, 2011]. Напанская свита охарактеризована комплексом фораминифер, редкими находками макрофауны и листовой флоры; возраст ее – поздний палеоцен-ранний эоцен [Буданцев, 2006; Гладенков и др., 1997].

Снатольская свита, сложенная в основном песчаниками с редкими прослоями конгломератов и глинистых пород, является объектом нашего исследования. Породы свиты с несогласием (реже без несогласия) залегают на базальных конгломератах, относимых в некоторых разрезах к хулгунской свите (палеоцен) или снатольской (средний эоцен), которые перекрывают меловой фундамент. В нескольких разрезах песчаники снатольской свиты с угловым и стратиграфическим несогласием залегают непосредственно на меловом фундаменте [Соловьев, 2005]. В работе [Гладенков и др., 1997] в правом борту р. Снатолвзем описан тектонический контакт между напанской и снатольской свитами. Подошва напанской свиты не обнажена.

Снатольская свита широко развита в пределах всего Западно-Камчатского бассейна. В северной его части, в районе бухты Чемурнаут и Паланском районе, в одновозрастных отложениях, согласно [Решения ..., 1998], выделяются ратегинская и усть-анадыркская свиты. Мощность среднеэоценовых отложений изменяется с севера (300—400 м) на юг (50—100 м), достигая максимальных значений в районе Тигильского поднятия (500—1000 м) [Решения ..., 1998]. На юге Западно-Камчатского осадочного бассейна свита выклинивается.

Подробная палеонтологическая характеристика нижней части разреза осадочного бассейна приведена в работах [Гладенков и др., 1991, 1997, 2005; Серова, 2001; Дмитриева, 2007]. В основном, это комплексы морских моллюсков и бентосных фораминифер, часто содержащие эндемичные виды.

Примечательно, что ни в одном из изученных нами разрезов нижней части Западно-Камчатского осадочного бассейна, равно как и в опубликованных работах, не встречается последовательное залегание палеоцен-эоценовых свит.

ИСТОРИЯ ИЗУЧЕНИЯ БАССЕЙНА

Весомый вклад в изучение литологии и стратиграфического расчленения нижней части разреза Западно-Камчатского осадочного бассейна внесли работы коллектива сотрудников ГИН РАН [Гладенков и др., 1991, 1997, 2005] и ВНИГРИ. Оценкой перспективных структур и интервалов осадочного разреза на наличие углеводородов занимались исследователи из МГУ и ВНИГРИ [Свистунов и др., 1977; Григоренко и др., 1969, 1981, 2011; Белонин и др., 2003].

В работе [Гладенков и др., 1997] приведены палеогеографические схемы для палеоцен—раннеэоценового времени, построенные на основании литолого-стратиграфических данных без учета палинспастических реконструкций. На них схематично показан снос обломочного материала и возможные ареалы вулканизма в пределах Западно-Камчатского бассейна осадконакопления.

Палеогеографические реконструкции для более позднего интервала — позднего эоцена и олигоцена, основанные на изучении литофаций и формационном анализе кайнозойского разреза по наземным обнажениям и керновому материалу, приведены в работе [Белонин и др., 2003]. На картах показано распределение литофаций и областей с разным режимом осадконакопления, однако не указаны возможные направления сноса обломочного материала.

Детальные исследования состава и формационной принадлежности терригенных пород нижней части осадочного разреза бассейна опубликованы Ю.Н. Григоренко [1969, 1981, 2011]. В работе [Григоренко, 1981] все песчаники отнесены к группе граувакковых пород, оценен состав базальных конгломератов, реконструированы основные направления сноса обломочного материала с запада и востока в зарождающийся субмеридиональный прогиб.

МЕТОДЫ ИССЛЕДОВАНИЯ

Для комплексного изучения песчаников нами применялись стандартные методы петрографического и геохимического анализа, анализ тяжелой фракции и детальные исследования детритового циркона — его кристалломорфологии и датирование методом U-Pb LA-ICP-MS.

2016

	A114	Inc		6	14	٢	8	13	19	9	9	8	11	11	٢	з	14	5	٢	7	6	10	10	6	6	12	12	٢	×
	Mtv			129	94	88	110	112	130	96	107	105	92	89	98	130	154	65	86	88	93	54	79	100	117	119	105	87	103
	[-		387	369	203	350	316	360	316	316	307	314	279	346	322	319	348	326	298	323	363	309	265	311	317	276	273	307
	11	D		12	9	4	5	11	22	9	6	2	8	8	20	5	5	7	4	4	ŝ	4	4	S	8	4	4	S	"
	Ê	d D		1	4	7	6	6	7	7	5	7	6	4	4	з	0	5	7	5	7	9	1	0	5	ю	7	4	<i>c</i>
	ء و	н 		4	6	2	1	2	0	0	0	0	0	6	1	5	1	4	5	0	6	7	[3	4	5	11	15	7	5
	0			0	0	0	1	1	0	3	5	0	3	1	1	1	0	0	5	1	7	3	-	0	0	33	0	0	0
	t Ls	-																											
	h Ls			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Lsc]	Ls		0	0	10	0	0	9	0	5	0	0	0	7	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Lss			1	0	5	0	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0
	Lsa		tpe3	0	0	0	0	0	0	0	15	12	11	0	0	5	9	4	0	0	1	0	7	0	0	7	0	0	0
	Lssh		ий раз	2	5	0	0	0	0	0	0	0	0	4	0	9	З	0	0	0	15	11	٢	15	10	6	9	15	7
	ţ		тинск	0	0	15	0	0	0	1	0	0	2	0	0	3	7	5	0	0	0	0	1	0	0	0	0	0	0
	Lw		Точил	18	23	30	20	5	0	88	70	56	56	15	20	16	20	25	24	22	15	48	37	12	26	10	27	34	37
	Lvf			12	5	5	22	0	45	6	17	32	11	21	0	38	13	12	16	26	33	56	26	70	6	15	20	22	23
	мм	Lv		66	21	4	28	21	24	27	14	46	8	30	32	25	6	12	15	35	19	19	25	32	7	35	13	11	16
TbI	vl I			0	0	10	0	0	0	0	0	0	0	25	0	13	14	25	30	30	27	16	32	17	28	37	12	21	12
ой сви		 ד		0.	0	ŝ	5	-	Ś	3	1	1	3	6	4	_	7	0	т. т.	7	m m	0	6	5	5	m m	6	5	5
ОЛЬСКО	<u>ц</u>	-		6 7	5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	1	8	3	7 1	6	9 1	4	0	4	4	7	e	. 1			9	5	9	5	1 1
снато		-		. 6	<u>~</u>	5	9	7	6	4	ñ	5	4	6	9	7	. 120	11,	6	Ω,	6	δά.	3	5	8	S.	4	.6	∞ ∞
ников	Č	5		34	20	ŝ	80	S	m	12	ব	21	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	8	14	11	×	15	13	15	27	11	17	25	22	ŝ	
песча	Č	3		14	41	22	15	21	12	13	5	11	20	14	35	15	13	20	17	12	27	17	11	16	36	20	17	10	11
octab]		III)		84	133	60	161	135	106	91	121	72	118	68	141	76	82	89	91	74	81	68	82	57	69	70	78	44	78
Таблица 1. С	Обиззан	Ооразец		AS-06-57	AS-06-59	SN01	AS-06-60	AS-06-61	AS-06-69	AS-06-70	AS-06-72	AS-06-73	AS-06-75	AS-06-76	AS-06-01	XA-08-98	XA-08-97	XA-08-99	XA-08-100	XA-08-101	XA-08-102	XA-08-103	XA-08-104	XA-08-105	XA-08-106	XA-08-107	XA-08-110	XA-08-113	XA-08-114

ХИСАМУТДИНОВА и др.

Таблица 1. О	кончан	ие																				
OGnazen		ç	Č	٩	ц	Lvl	Lvm	Lvf	Lw	۲ ۲	Lssh	Lsa	Lss	Lsch	Lst	Lso	ĉ	uOu	11	E	Mtv	
плердоо		Ş	5	-	Ы		Г	x					Г	6			5	don	2	-	VIIV	
									Май	начск	ий раз	je3										
MR-05AS08	53	15	16	46	15	10	23	45	10	10	9	0	5	0	0	0	5	3	11 2	263	115	19
MR-05EB97	51	13	14	44	6	18	35	32	16	5	7	0	10	0	0	0	9	б	16	274	121	6
XA-08-8	74	13	20	62	23	25	41	19	5	6	0	0	13	0	0	0	4	4	s S	317	98	16
MR-05AS15	74	23	8	61	8	15	18	40	11	11	4	0	11	0	0	0	8	7	~	302	101	11
XA-08-13	97	15	7	90	0	7	67	41	22	13	0	0	7	0	0	0	ŝ	5	4	368	116	×
XA-08-14	86	38	12	58	6	15	42	21	57	5	0	0	7	0	0	0	5	5	۲ ۲	367	100	9
MAO-08	45	20	9	61	2	15	23	29	39	5	0	0	0	0	0	0	37	5	S	292	107	10
MR-05AS23	89	21	26	25	38	0	24	14	29	4	0	4	0	0	0	18	-	4	4	301	112	21
MR-05AS24	96	29	13	68	30	16	10	14	32	5	5	0	0	-	0	4	0	7	13	335	97	16
MR-05AS28	68	31	19	34	19	20	12	39	22	8	2	0	0	4	0	5	0	25	<u>x</u>	316	103	13
									VByc	ински	ий разр	e3										
XA-08-80	68	10	10	75	14	15	32	43	20	0	0	0	13	7	0	2	5	9	7	327	51	9
XA-08-81	76	12	15	41	17	19	36	26	32	0	0	0	15	8	0	0	5	6	4	315	47	11
XA-08-83	77	18	~	71	13	16	19	52	10	2	5	0	17	S	0	9	7	11	т т	340	67	٢
XA-08-86	67	24	12	43	5	Э	6	31	56	0	7	0	4	9	0	0	6	11	Ś	292	85	S
								Ρ	азрез г	io pek	e Pocce	ошине										
06AS-08	69	41	37	48	7	13	19	27	15	2	6	0	0	0	0	0	0	8	12 3	307	108	8
06AS-09	74	31	43	56	4	15	17	34	10	1	7	0	0	0	0	0	0	4	~	304	98	S
AS-06-10	57	16	10	20	8	16	2	15	26	10	4	0	×	13	0	0	0	0	e e	208	63	17
AS-06-11	67	20	24	66	15	10	26	34	30	1	4	0	1	0	0	0	5	1	7	311	91	13
								Р	азрез г	io pek	опоП з	винке										
AS-06-26	70	12	35	63	2	15	33	20	15	0	2	0	0	0	1	4	0	9	11 2	289	53	7
AS-06-27	61	33	20	51	5	19	27	43	22	0	0	0	S	0	0	0	5	9	S S	302	77	6
AS-06-28	53	19	13	36	12	40	23	57	31	0	0	0	3	0	0	0	10	3	3	303	68	15
								P_{2}	зрез п	о реке	Белого	оловой	.]									
XA-08-122	62	21	12	80	11	15	31	38	17	0	1	0	1	0	0	3	4	3	6	308	59	9
XA-08-123	46	13	17	68	2	19	46	53	10	0	0	0	1	0	0	0	4	7	9	287	66	6
XA-08-124	70	18	4	75	7	20	32	40	15	0	0	0	5	0	0	0	ε	4	4	307	121	10
XA-08-125	38	14	12	66	7	25	51	57	16	0	0	0	1	0	0	0	4	2	7	300	150	11
Примечание. (2т – мс	нокрис	сталли	теский	кварц;	$Qp - \pi$	оликри	сталли	ческий	кварц;	Qq — K	варцит	ы; Р –	полевы	е шпат	ы; Fq –	cpoctk	и квари	а и пол	EBOLO I	ппата; с	þpar-
менты горных	:пород:	Lv – by	лкани	tы, Lvl	– вулк	аниты	с лейст	овой с	груктур	ой (пр	еимуще	ственн	о осно	BHOFO N	средн	ero coc	raba), I	vm – By	лканил	rы с MV	гигодуі	овой
структурой (п) метаморфичес	реимущ илор	ectbehh.	но анде з – осал	3MTbI, J TOUPLIE	ациты	и их ан ы I ssh	іалоги) — глич	, LVI – H	вулкан – аргил	иты с ф	ельзит атевис	овой ст	руктур [ss _ м	ой, Lvv Эпиозет	- pack	ристал • песча	лизова чихи Т	HHOC ByJ	іканича	Eckoe c	текло, уфы и 1	- m Maria
лленные априла	NATE LIVE	оды, ы У — лруг	s — осал тие осал	AUHHAN	TODOTI :	ut, Laau V (Kanfo	- LULVILL	DI, L3G VTOIL)	$-a_{\rm DI} = n$	ини вы и илные 1	иинера.	лы пОл	ш — с — ШВС	THRE M	иатовни тнерать	и II – С	ники, т	ызменён	ромпи, пные ми	т — телати	учры и с ч. Т – с	VUNA VMMA
подсчитанных	3epen B	шлифе	3, Mtx -	- MaTpl	IKC N IIE	MCHT, A	Aut – ay	ул очио, у ТИГСНН	ЧР Р.	ералы.	יייקיוואוא	1211, iQ1		ייין אומע	יישלאנוו	, , ,	STITUTE	TATIANCIA	ייין אומדו	umd vui	ы, т с	א ואוואנ ע

364

ЛИТОЛОГИЯ И ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ № 4 2016

Песчаники изучались под поляризационным микроскопом. При увеличении ×10 определялся состав породообразующих минералов, наблюдались взаимоотношения зерен, изучался тип и состав цемента; при увеличении ×20 проводился подсчет количества породообразующих минералов и обломков пород (минимальное число анализируемых 300 шт). Методика подсчета зерен была разработана Ф. Чейзом [1963], модифицирована М.Н. Шапиро. Состав песчаников приведен в сводной таблице 1.

Определение содержания основных породообразующих компонентов песчаников (силикатный анализ) выполнено в лаборатории химико-аналитических исследований ГИН РАН (исполнитель М.В. Рудченко).

Анализ тяжелой фракции песчаников проводился в лаборатории минералогического и трекового анализа ГИН РАН с применением стандартной методики [Копченова, 1979]: дробление → \rightarrow разделение на ситах \rightarrow промывка на концентрационном столе \rightarrow магнитная сепарация \rightarrow деление в тяжелой жидкости (бромоформ), электромагнитная сепарация \rightarrow изучение фракции под бинокуляром. Далее нами изучалась морфология кристаллов циркона монофракции размерности -0.07 мм (по методу [Pupin, 1980]). Полученные данные были соотнесены с диаграммой Е. Белоусовой [Belousova et al., 2006]. В ней исходная таблица морфотипов циркона, по [Pupin, 1980], дополнена информацией о генетических типах гранитоидов, для которых характерен тот или иной габитус кристаллов.

Определение возрастов обломочного циркона проведено методом лазерной абляции в индуктивно-связанной плазме (LA-ICP-MS) [Gehrels et al., 2008; Gehrels, 2011] в Университете штата Аризона (г. Тусон, США).

ИЗУЧЕННЫЕ РАЗРЕЗЫ

Полевые исследования на Западной Камчатке осуществлялись отрядом ГИН РАН в 2005–2008 гг. в районе Тигильского поднятия. Нами были описаны и изучены отложения снатольской свиты в пределах стратотипических морских береговых разрезов – Точилинского, Майначского, Увучинского. Представительные разрезы свиты изучены также по берегам крупных рек – Рассошине, Половинке, Снатолвэем, Белоголовой, Ушх (см. рис. 1). В ходе исследований составлялись детальные литологические колонки, изучались текстурные и структурные особенности слоев песчаников, их взаимоотношения, отбирались образцы всех разновидностей.

Точилинский разрез располагается на побережье Охотского моря. Слагающие его породы образуют крупную антиклинальную складку, в ядре которой выходят отложения снатольской свиты. Ядро антиклинали обнажено фрагментарно, часть обнажения скрыта осыпью. Породы свиты залегают субгоризонтально, реже с углами падения 5°-7°. Наиболее полно этот разрез описан в работе [Гладенков и др., 1991]. В береговом разрезе обнажается только верхняя, наиболее песчаная часть снатольской свиты общей мощностью 400 м. Для северо-восточного крыла складки характерны деформации растяжения сбросовой кинематики [Моисеев, Соловьев, 2010], сжатия со структурами вклинивания и надвига.

На рис. 2 приведен обобщенный разрез свиты с указанием мест отбора проб. Всего отобрано более 50 образцов песчаников, из них подсчитано соотношение породообразующих минералов и обломков пород в 23 шлифах. По составу песчаники относятся к кварц-полевошпатовым грауваккам, несколько образцов представляют собой мезомиктовые и аркозовые песчаники по классификации В.Д. Шутова [1975].

Обобщенный состав песчаников: кварц представлен моно- и поликристаллическими зернами, часто хорошо окатанными, с небольшими газовожидкими включениями. В незначительном количестве встречаются сростки кварца и полевых шпатов. Полевые шпаты, в основном плагиоклазы, реже микроклины и ортоклазы таблитчатые или неправильной формы кристаллы, часто сдвойникованные. Полевые шпаты замещены серицитом, реже карбонатом. Среди обломков пород доминируют вулканиты с лейстовой и фельзитовой структурами, в меньшей степени встречаются обломки кварцитов, осадочных пород, практически отсутствуют фрагменты метаморфических пород (рис. 3).

Майначский разрез располагается на побережье Охотского моря у мыса Бабушкин. Разрез приурочен к западному крылу моноклинали (см. рис. 1) с углами падения 30°-40° вблизи контакта среднеэоценовых и верхнемеловых пород и выполаживающийся по направлению к центральной части складки до 10°-15°. Фундаментом здесь служат песчанки майначской свиты, относящиеся к фации дистальных турбидитов [Соловьев, 2008] и накопившиеся в глубоководных условиях. На них с угловым и стратиграфическим несогласием залегают породы снатольской свиты. Непосредственный контакт задернован, а на пляже лежат глыбы кайнотипного андезита размером до 2 м в диаметре. Олистолит петрографически схожего андезита из песчаников снатольской свиты, встреченный в 30 м выше по разрезу, был продатирован К-Аг методом. Полученный возраст 87 ± ± 3.5 млн лет отвечает коньяк-сантонскому интервалу [Хисамутдинова и др., 2015]. Нижнюю часть толщи слагают пестрые разногалечные конгломераты, возраст и состав которых охарактери-

ные и структурные признаки: 2 – косая слоистость, 3 – ходы червей-илоедов, 4 – углефицированный растительный детрит, 5 – дизъюнктивные дислокации, 6 – резкий контакт; 7 – номер образца (+тф – проанализирована тяжелая фракция); 8–13 – литологический состав: 8 – конгломераты, 9 – пески и песчаники, 10 – I – номера разрезов, см. рис 1 (I – Точилинский, II – Майначский, III – Увучинский, IV – р. Рассошина, V – р. Половинка, VI – р. Белоголовая); 2–6 – текстуралевролиты, глины, 11 – туфы и кремни, 12 – олистолит андезита, 13 – уголь.

ЛИТОЛОГИЯ И ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ 2016 Nº 4

зован в работе [Хисамутдинова и др., 2015]. Выше они сменяются мелководно-морскими песчаниками. В преимущественно песчаниковой толще снатольской свиты встречаются прослои углистых глинистых пород (см. рис. 2).

Текстурно-структурные особенности песчаников – обильные знаки ряби, косая слоистость, подчеркиваемая распределением углистых частиц, свидетельствуют о мелководных условиях накопления. Часто в песчаниках встречаются ожелезненные зоны. По составу песчаники отвечают полевошпат-кварцевым грауваккам, в которых доля кварца составляет 25–37%. Кварц монои поликристаллический, среди обломков встречаются зерна кварцитов, относимых нами к обломкам пород. Полевые шпаты представлены в основном плагиоклазами, реже калиевыми полевыми шпатами (ортоклаз, микроклин), слагая 8-24% породы. Часто это удлиненные таблитчатые зерна, реже неокатанные кристаллы. Вторичные изменения – серицитизация, карбонатизация – развиты неравномерно. Среди обломков пород доминируют вулканиты. Это зерна с фельзитовой и микролитовой структурами, а также вулканические стекла, часто девитрифицированные, хлоритизированные, редко цеолитизированные. Осадочные породы (песчаники и глинистые фрагменты) встречаются значительно реже, а обломки метаморфических пород, представленные хлоритовыми и афиболитовыми сланцами, наблюдаются в единичных случаях (см. рис. 3).

Увучинский разрез располагается в береговом обрыве бухты Квачина (см. рис. 1). Породы здесь слагают две складки – антиклинальную с крупным выходом меловых песчаников в ядре и сопряженную с ней синклинальную ССЗ простирания, ядро которой сложено породами миоцена, с углами падения крыльев 17°-25°. Мощность палеогеновой части осадочного разреза здесь значительно сокращена. Мощность снатольской свиты составляет 72 м (см. рис. 2). Породы свиты с угловым и стратиграфическим несогласием залегают на верхнемеловых песчаниках майначской свиты. В нижней части толща представлена преимущественно конгломератами. чередующимися с песчаниками. Конгломераты пестрые, разногалечные, толщина прослоев составляет 50-70 см. Песчаники, переслаивающиеся с конгломератами, грубо-среднезернистые, часто косослоистые, с "плавающей" галькой. Состав и возраст галек из конгломератов нижней части разреза подробно описан в статье [Хисамутдинова и др., 2015].

Песчаники по составу отвечают полевошпаткварцевым грауваккам (см. рис. 3). Кварц моно- и поликристаллический, без включений, слагает 23–31% от площади шлифа. Нередко встречаются зерна кварца треугольной формы со сглаженными ребрами, средней окатанности, форма зерен указывает на их вулканогенное происхождение. Полевые шпаты представлены плагиоклазами, калиевые полевые шпаты встречаются редко. Таблитчатые и квадратные в сечении зерна полевых шпатов слагают 13-22% площади шлифа. Полевые шпаты местами замещены агрегатом соссюрита, реже серицита. Среди обломков пород чаще других встречаются вулканические стекла, вулканиты с фельзитовой и микролитовой структурами основной массы. Вулканические стекла частично девитрифицированы, замещены агрегатом глинистых минералов, хлоритизированы. Фрагменты вулканитов имеют более свежий облик, хотя стекловатая масса, слагающая интерстиции между лейстами и кристаллами плагиоклаза, часто замещена вторичными глинистыми минералами. Обломки вулканитов средней и хорошей окатанности, в целом их размер крупнее минеральных зерен, слагающих песчаники. Кроме вулканитов в заметном количестве встречаются обломки песчаников, по-видимому, позднемелового возраста.

367

Разрез по р. Рассошине. В правом борту реки Рассошины, в 800 м выше по течению от впадения ее в р. Напану, обнажаются породы хулгунской (?) и напанской свит [Карта ..., 1999] (см. рис. 1). Они с резким угловым несогласием залегают на вулканитах предположительно позднемелового возраста. Мы включили описание и сравнение песчаников из этого разреза с песчаниками стратотипических морских береговых разрезов, так как здесь отчетливо виден контакт нижней части толщи и верхнемелового фундамента. Это позволяет уверенно сопоставлять расположенные на одном стратиграфическом уровне слои песчаников. Базальная часть кайнозойского разреза сложена плохосортированными конгломератами с прослоями алевролитов, выше они сменяются алевролитами, вмешаюшими крупные пачки углей (см. рис. 2), а через 15 м вверх по разрезу крупнозернистыми песчаниками. В алевролитах встречаются обильный углефицированный растительный детрит и отпечатки флоры. Песчаники также насыщены углефицированным растительным детритом, располагающимся на поверхностях напластования, подчеркивающим косую слоистость. По гранулометрическому составу песчаники меняются от крупнозернистых до мелкозернистых. Мелкозернистые песчаники более зрелые, в них отсутствует растительный детрит. Видимая мощность толщи песчаников составляет 130 м. На классификационной диаграмме [Шутов, 1975] фигуративные точки песчаников сосредоточены преимущественно в поле граувакк (см. рис. 3). Зерна кварца свежие (19–27%), с редкими включениями, окатанные и остроугольные, нередко поликристаллические. Полевые шпаты (12-24%), в основном плагиоклазы, слагают моно- и полисинтетически сдвойникованные кри-

сталлы. Они слабо окатаны и частично замещены вторичными минералами (серицитом, карбонатом). Доминирующими компонентами, слагающими песчаники, являются фрагменты вулканических и осадочных горных пород (46–62%). Эффузивные породы с фельзитовой структурой составляют до 10% всех обломочных частиц, в меньшем количестве встречаются вулканические стекла, вулканиты с фельзитовой и микролитовой структурами, песчаники.

Разрез по р. Половинке расположен на левом берегу реки, стекающей с г. Половинная (см. рис. 1). Здесь обнажаются породы напанской свиты [Карта ..., 1999]. Это горизонтально залегающая песчаная толща, видимая мощность которой около 60 м. Подошва толщи не вскрыта. В нижней части разрез сложен мелкогалечными рыхлыми конгломератами, сцементированными бурым песчаником (см. рис. 2). Выше конгломераты сменяются песчаниками с обильной "плавающей" галькой угля, горизонтальной и косой слоистостью и углефицированным растительным детритом. Венчает разрез маломощный прослой конгломератов, сменяющийся глауконитовыми песчаниками.

Близость разрезов и схожесть облика и состава песчаников, наличие пропластков угля позволяют сопоставить между собой песчаную толщу разреза рек Половинка и Напана. Песчаники, обнажающиеся в береговых обрывах р. Половинки, коррелируются нами со средней частью песчаного разреза р. Рассошины.

Песчаники из разреза по р. Половинке по составу соответствуют полевошпат-кварцевым грауваккам (см. рис. 3). Кварц слагает 13–23% породы. Это средней и хорошей окатанности зерна монокристаллического облика, нередко встречаются зерна треугольной формы, свидетельствующие о разрушении вулканогенных пород. Полевые шпаты (11–21%) представлены плагиоклазом и микроклином в виде средней окатанности зерен и удлиненных кристаллов, вторично замещенных серицитом. Встречаются сростки кварца и полевых шпатов, являющиеся, по нашему мнению, фрагментами пород кислого состава.

Разрез по *р. Белоголовой* расположен значительно южнее описанных выше разрезов. В статье он приведен для сравнения. Это сводный разрез, составленный из отдельных участков, обнаженных в бортах реки. Видимая мощность песчаников, залегающих субгоризонтально, составляет 65 м. Подошва толщи не обнажена, поэтому невозможно определить положение песчаников относительно границы с меловым фундаментом. Состав песчаников на классификационной диаграмме отвечает кварц-полевошпатовым и полевошпаткварцевым грауваккам. Кварц и полевые шпаты схожи с описанными в разрезах по рекам Россошине и Половинке, а среди обломков пород в равных количествах отмечены вулканиты с фельзитовой, лейстовой и микролитовой структурами.

Кроме обработки собственного каменного материала, нами были привлечены данные из отчетов ВНИГРИ (отв. исполнитель Л.В. Гома, исполнители Ю.С. Воронков, Л.М. Пылина и др.) по бурению параметрических скважин на Тигильской площади и анализу полученного керна. Расположение скважин и состав песчаников, отобранных из кернового материала, приведен в соответствии с отчетом по теме "Обработка материалов бурения параметрических скважин Тигильского района Западной Камчатки" (отв. исполнитель Л.В. Гома) на рис. 4. Песчаники, вскрытые скважинами Рассошинской, Средне-Рассошинской и Хромовскими-1, 2, имеют более незрелый состав, часто они относятся к грауваккам по классификации В.Д. Шутова [1975]. Среди породообразующих минералов доминируют кварц и полевые шпаты, а обломки пород представлены вулканитами и вулканическими стеклами, песчаниками, алевролитами, кремнями, сростками полевых шпатов и кварца.

В целом, песчаники среднеэоценовой снатольской свиты, обнаженные на поверхности и пробуренные параметрическими скважинами, имеют незрелый состав. На классификационной диаграмме большая часть песчаников попадают в поля граувакк, несколько образцов, отобранных в кровле толщи, относятся к олигомиктовым и мезомиктовым песчаникам (см. рис 3, рис. 4). Четкого тренда изменения состава по латерали/вертикали не прослеживается.

На сводной треугольной диаграмме с областями геодинамических обстановок формирования псаммитов, по [Dickinson, 1983], состав пород питающих провинций (и их геодинамическая позиция) попадает в поля смешанного типа источника, а также эродированных и слабоэродированных дуг переходного типа (рис. 5).

Рис. 3. Состав песчаников, по [Шутов, 1975].

a - QFL -классификационная диаграмма состава песчаников, Q = Qm + Qp, F = Fm + Fp, L = Qq + Fq + Lv + Lm + Lssh + Lsa + Lsch + Lst + Lso.

^{1–3 –} морские береговые разрезы: 1 – Точилинский, 2 – Майначский, 3 – Увучинский; 4–6 – разрезы по берегам крупных рек: 4 – р. Рассошина, 5 – р. Половинка, 6 – р. Белоголовая;

б – диаграмма состава фрагментов пород, по [Шванов, 1987].

volc – вулканических, silic – кремней и кремнистых сланцев, sed+met – осадочных и метаморфических.

Рис. 4. Состав песчаников снатольской свиты (керн параметрических скважин Западной Камчатки), по [Шутов, 1975]. QFL – классификационная диаграмма состава песчаников, Q = Qm + Qp, F = Fm + Fp, L = Qq + Fq + Lv + Lm + Lssh + Lsa + Lsch + Lst + Lso.

1–4 – параметрические скважины: 1 – Россошинская, 2 – Хромовская № 1, 3 – Хромовская № 2, 4 – Гаванская. На врезке – местоположение скважин.

ДИСКРИМИНАНТНЫЕ ДИАГРАММЫ, СТЕПЕНЬ ВЫВЕТРЕЛОСТИ И ГЕОДИНАМИЧЕСКАЯ ПОЗИЦИЯ ЭРОДИРУЕМЫХ ПОРОД – ПОСТАВЩИКОВ ТЕРРИГЕННОГО МАТЕРИАЛА

Дополнительным инструментом при реконструкции источников сноса песчаников является анализ содержания в них петрогенных оксидов. Нами была применена диаграмма, предложенная в работе [Roser, Korsch, 1982] и часто используемая при установлении питающих провинций для осадочных бассейнов и тектонических реконструкций [Zhengjun et al., 2005; Concepcion et al., 2012]. На ней значения содержаний SiO₂ и суммы Na₂O, K₂O для проанализированных песчаников (табл. 2), образуют единую область, попадая в поля океанической островной дуги и, частью, активной континентальной окраины (рис. 6).

По индексу CIA – химическому индексу изменения [Nesbitt, Young, 1984] часть точек попадает в область невыветрелых пород с индексом меньше 50, часть – в область со средним значением индекса 65, соответствующего слабоизмененным породам в питающей провинции и умеренному климату (рис. 7).

МИНЕРАЛЬНЫЙ СОСТАВ ТЯЖЕЛОЙ ФРАКЦИИ

Необходимым инструментом для установления питающих провинций песчаников является анализ минерального состава тяжелой фракции [Morton, 1985; Morton, Hallsworth, 1994, 1999; Morton et al., 2003; Mange, Otvos, 2005; Малиновский, Маркевич, 2007]. 18 представительных проб песчаников из разных разрезов, предварительно изученных петрографически, были раздроблены и разделены на фракции, минеральный состав которых был изучен под бинокуляром Меiji Techno с применением иммерсионных жидкостей. Процентное содержание минералов тяжелой фракции в песчаниках приведено в таблице 3.

Тяжелые минералы, с некоторой долей условности, были разделены на три ассоциации, явля-

Рис. 5. Состав песчаников из областей сноса разных геодинамических обстановок, по [Dickinson, 1983]. I – центральная часть платформы; II – переходная зона платформы; III – выступы фундамента; IV – орогенные области; V–VII – островные дуги: V – расчлененная, VI – слаборасчлененная, VII – нерасчлененная. 1–6 – разрезы: 1 – Точилинский, 2 – Майначский, 3 – Увучинский, 4 – по р. Рассошине, 5 – по р. Половинке, 6 – по р. Белоголовой.

Рис. 6. Положение точек состава песчаников на диаграмме [Roser, Korch, 1986].

ЛИТОЛОГИЯ И ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ № 4 2016

Рис. 7. Положение точек состава песчаников на диаграмме [Nesbitt, Young, 1982].

Рис. 8. Распределение минералов тяжелой фракции – индикаторов размываемых пород – в изученных скважинах и сводной колонке.

а-в – скважины: а – Хромовские, б – Рассошинская, в – Средне-Рассошинская; г – сводная колонка снатольской свиты (наземные обнажения).

1 — циркон, апатит, рутил, турмалин (индикаторы размыва пород кислого состава); 2 — шпинель, ильменит, лейкоксен, пироксен (индикаторы размыва пород основного состава); 3 — гранат, амфибол, анатаз, сульфиды, барит (минералы гетерогенной природы).

ический состав песчаников снатольской свиты, (м Разрез, свита SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeC	з песчаников снатольской свиты, (м SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeC	иков снатольской свиты, (м TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeC	атольской свиты, (м Al ₂ O ₃ Fe ₂ O ₃ FeC	сой свиты, (м Fe ₂ O ₃ FeC	TeC	rac.	., %) MnO	MgO	CaO	Na ₂ O	K ₂ 0	P_2O_5	п.п.п.	Сумма	H_2O^-	CO ₂	$\mathrm{H_2O^+}$
Морские	разрезы																
AS-06-01	Точилинский разрез, sn	57.91	0.80	17.71	2.01	5.18	0.04	3.97	1.75	2.81	1.40	0.16	5.64	99.38		1.09	
AS-06-57	*	56.45	2.98	12.34	3.64	6.67	0.04	5.14	1.83	3.02	0.54	0.13	6.50	99.28		1.22	
AS-06-59	*	53.77	0.88	15.66	1.78	4.58	0.15	3.40	6.52	2.10	1.70	0.14	8.81	99.49		4.48	
AS-06-61	*	56.42	0.95	16.99	3.23	3.39	0.07	3.52	3.57	2.33	1.53	0.16	7.07	99.23		2.49	
AS-06-70	*	55.72	0.88	14.60	2.18	2.22	0.14	2.33	8.99	2.32	1.65	0.17	8.86	100.06		5.27	
AS-06-71	*	53.90	1.00	16.21	2.11	5.02	0.16	3.51	6.25	2.30	1.53	0.17	7.75	99.91		4.97	
AS-06-72	*	49.50	0.92	14.62	2.36	3.36	0.20	2.50	11.70	2.00	1.56	0.18	10.79	69.66		7.51	
AS-06-73A	*	55.91	0.89	15.04	2.28	3.37	0.12	2.96	7.30	2.47	1.62	0.15	8.16	100.27		4.91	
AS-06-73B	*	57.62	0.71	13.44	2.20	3.96	0.09	3.09	7.04	2.43	1.32	0.16	7.46	99.52		4.59	
AS-06-74	*	37.08	0.89	14.54	2.23	2.48	0.11	2.27	16.85	2.59	0.85	0.11	19.38	99.38		10.72	
AS-06-75	*	55.20	0.90	15.80	2.67	3.02	0.10	2.91	7.50	2.13	1.85	0.15	8.00	100.23		5.19	
XA-08-111	*	40.53	0.61	10.77	1.51	2.18	0.21	2.04	18.57	1.24	1.23	0.11	20.25	99.25	0.92	16.12	3.14
XA-08-114	*	62.33	0.81	13.91	2.85	1.66	0.04	1.54	4.59	3.21	1.41	0.10	7.25	99.70	1.12	3.58	2.52
MR-05-AS-23	Майначский paзpe3, sn	35.91	0.46	7.95	5.85	3.91	0.19	3.51	19.19	2.25	0.83	0.56	19.00	99.61		13.13	
MR-05-AS-24	*	43.78	0.53	9.74	1.28	1.47	0.17	1.52	21.84	2.60	1.04	0.06	15.50	99.53		11.78	
MR-05-AS28	*	67.60	0.52	10.55	4.23	2.66	0.03	1.86	1.40	1.84	1.66	0.08	6.94	99.37		0.20	
XA-08-13	*	65.14	1.15	13.46	2.85	2.43	0.04	1.94	2.09	3.67	1.77	0.09	4.80	99.43	0.95	1.07	2.05
XA-08-71	*	57.22	0.75	14.77	1.58	4.13	0.18	1.79	5.70	3.14	1.63	0.20	8.74	99.83	1.10	4.47	3.16
Разрезы по б	ерегам крупны	х рек					L										
AS-06-09	р. Рассоши- на, пр	34.44	0.47	9.90	3.49	4.15	0.15	5.00	18.50	1.52	0.45	0.11	21.24	99.42		19.37	
AS-06-11	*	60.50	0.60	12.99	1.42	3.11	0.20	2.50	5.41	2.35	1.36	0.17	8.90	99.51		5.77	
AS-06-26	р. Половин- ка, пр	34.25	0.50	10.20	3.19	4.46	0.14	4.90	18.44	1.62	0.50	0.09	20.93	99.22		18.14	
AS-06-27	*	65.93	0.50	17.00	1.10	1.99	0.04	0.87	2.21	2.44	1.23	0.14	6.60	100.05		3.28	
AS-06-28	*	65.92	0.79	13.77	2.72	3.87	0.03	2.98	0.53	3.31	1.25	0.19	3.88	99.24		0.20	
XA-08-123	р. Белоголо- вая, sn	74.44	0.45	12.72	1.47	1.05	0.02	0.98	0.50	2.98	1.95	0.10	3.05	99.71	1.00	0.22	1.84
XA-08-125	*	75.66	0.44	10.86	3.07	0.54	0.09	0.97	0.62	2.64	1.71	0.12	2.96	99.68	0.81	0.22	2.01
										:	1						

(Ma
свиты,
снатольской
песчаников
состав
Химический
પં
Ца

ЛИТОЛОГИЯ И ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ № 4 2016

РЕКОНСТРУКЦИЯ ИСТОЧНИКОВ СНОСА СРЕДНЕЭОЦЕНОВЫХ ОТЛОЖЕНИЙ

373

Примечание. Свиты: sn – снатольская, np – напанская, —"— тот же разрез и свита, что и в предыдущей строчке.

блица 3. Сод	цержание	минерал	юв тяжёло	ой фракц	ии (%) в 1	тробах сн	атольски	іх песчані	иков (обр	वअप्रधा अज्ञ	строены в	в направле	ении от г	юдошвы	к кровле)
Номер образца	Циркон	Рутил	Апатит	Гранат	Турма- лин	Суль- фиды	Амфи- бол	Пирок- сен	Анатаз	ШПИ- НеЛЬ	Ильме- нит	Лейкок- сен	Барит	тодипе	Чёрный рудный
[R-05-AS-28	5	11	8	6	0	0.5	0	0	0	58	0	7	0	0	0
A-08-132	0.2	0	0.8	0.01	0	0.5	0.01	86	0	0	0	0	0	0	0
A-08-122	11	13	0	11	0	0.1	0.1	1	0	8	16	40	0	0	0
AR-05-AS-24	13	6	4.5	8	0	7	0.5	0	0	7	22	29	0	0	0
AR-05-AS-23	4	3	0	14	0	1	0	5	0	1	56	16	0	0	0
ć Α-08-106	11	4	0	12	0	20	0	0	0	17	10	26	0	0	0
AS-06-11	17	6	0	6	14	0	0	8	0	1	41	1	0	0	0
XA-08-99	24	3	2	10	0.1	7	0	0.1	0.1	15	0	39	0	0	0
SN-01	17	2	0.1	10	0	1	0	2	0	12	10	13	0	0	33
AS-06-27	1	2	0	1.5	1	0.5	0	0	0	25	1	63	5	0	0
XA-08-86	3	2	5	1	0	67	0	0.1	0.1	0	21	1	0	0	0
AS-06-10	4	4	1	2	0	0	0	0.1	0.1	14	0	75	0	0	0
AS-06-09	22	4	0.1	18	1	0	0.1	0	0	26	0	29	0	0	0
AS-06-08	34	4	0	8	0	14	0	0.1	0.1	21	4	15	0	0	0
XA-08-60	8	20	0	2	0	63	5	2.1	0	0.1	0	0	0	0	0
(A-08-69	29	3	0	7	0.1	36	0	0	0	3	9	16	0	0	0
MAO-08	0.1	0	0.1	1	0	74	3	1	0.1	2	16	1	0.5	1	0
ХА-08-81	3	2	0	2	0.1	60	0.1	0	0.1	0.1	6	24	0	0	0

ХИСАМУТДИНОВА и др.

374

ЛИТОЛОГИЯ И ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ № 4 2016

Рис. 9. Классификация морфологических типов кристаллов циркона в зависимости от температуры их образования [Pupin, 1980].

А индекс – отношение Al/(Na + K) контролирует развитие цирконовых пирамид, Т индекс – температура влияет на развитие цирконовых призм.

1-4 – содержание кристаллов обломочного циркона разной морфологии в пробе песчаника SN-01, %: 1 - 0.1 - 1; 2 - 0.1 - 1; 2 - 0.1 - 1; 2 - 0.1 - 1; 2 - 0.1 - 1; 2 - 0.1 - 1; 2 - 0.1 - 1; 2 - 0.1 - 1; 2 - 0.1 - 1; 2 - 0.1 - 1; 2 - 0.1 - 1; 2 - 0.1 - 1; 2 - 0.1 - 1; 2 - 0.11.1-5; 3-5.1-10; 4-20.1-25.

ющиеся индикаторами состава пород, преобладающих в области сноса. Подобные исследования проводились и ранее [Morton et al., 2003; Mange, Otvos, 2005; Малиновский, Маркевич, 2007 и др.]. Первая, сиалическая ассоциация, представлена минералами, связанными с разрушением кислых интрузивных и изверженных пород, – цирконом, апатитом, рутилом, турмалином. Основным минералом ассоциации является циркон (0.1–34%). Он представлен двумя генерациями: идиоморфной бесцветной или бледно-розовой и сиреневорозовой. Идиоморфные зерна имеют призматический, редко пирамидальный габитус, отдельные зерна в катодных лучах окрашены в желтый цвет. Сиренево-розовые зерна окатанные, единичные зерна сохраняют призматический габитус

2016

со сглаженными ребрами, в катодных лучах свечения не имеют. Поверхность зерен блестящая, гладкая, блеск стеклянный. Рутил является вторым по количеству минералом (0-20%) этой ассоциации. Черный, в тонких сколах просвечивает красным, реже окрашен в красный и оранжевожелтый цвета, блеск яркий, стеклянный. Резко преобладают обломки неправильной формы, иногда призматической, апатит (0-8%) представлен бесцветными прозрачными призматическими кристаллами, слабо окатанными. Зерна турмалина (0-0.1, в единичной пробе 14%) окатанные, прозрачные, бурого, зеленовато-бурого, темнозеленого цвета.

Вторая ассоциация мафическая, состоит из минералов-индикаторов основных интрузивных

Рис. 10. Связь морфологии кристаллов циркона с петрогенетической позицией материнских гранитов, по [Belousova et al., 2006].

1–3 – известково-щелочная серия: 1 – высокоглиноземистые лейкограниты, 2 – интрузии высокоглиноземистых монцогранитов и гранодиоритов, 3 – субавтохтонные монцограниты и гранодиориты; 4–6 – корово-мантийные граниты: 4 – гранодиориты и монцониты, 5 – монцограниты и высокоглиноземистые граниты, 6 – граниты субщелочной серии; 7–9 – мантийные граниты: 7 – щелочной серии, 8 – толеитовой серии; 9 – чарнокиты.

и изверженных пород – шпинели, ильменита, лейкоксена. пироксена. Наиболее распространенным минералом тяжелой фракции песчаников является шпинель (0-58%). Это черные оскольчатые зерна, отмечаются хорошо образованные октаэдры. Поверхность зерен гладкая блестящая, блеск смоляной. Зерна слабо окатанные и полуокатанные, часто вершины октаэдров сглажены. В равном количестве встречаются зерна лейкоксена (0-75%) и ильменита (0-56%). Лейкоксен бежевый, серо-бежевый, зерна неправильной формы. Ильменит представлен черными уплощенными, таблитчатыми зернами со смолистым блеском, иногда на поверхностях зерен наблюдается лейкоксенизация. Пироксены (0.1-2%) встречаются в незначительных количествах. Исключение составляет лишь один образец туфопесчаника, отобранный вблизи Ичинского вулкана, уже, по-видимому, сформировавшегося к моменту накопления среднезоценовой терригенной толщи. Содержание пироксенов в нем составляет 98%.

Остальные минералы тяжелой фракции и обломки горных пород из песчаников были объединены в третью группу (анатаз, барит, сульфиды, рудный минерал, амфибол, слюда, гранат, обломки пород — хлоритовых и актинолитовых сланцев). Генетически эти минералы могут относиться к различным типам пород — магматическим, метаморфическим, осадочным, не являясь при этом четким индикатором петрофонда питающей провинции. Процентные соотношения групп минералов-индикаторов нанесены на сводный разрез (рис. 8).

Такие же колонки построены нами и для параметрических скважин Рассошинская, СреднеРассошинская, Хромовская-1, 2, данные минералогического анализа керна приведены в Отчете [1986]. На колонках прослеживается постепенное увеличение доли сносимого обломочного материала с разрушаемых комплексов пород основного состава, в то же время доля минералов тяжелой фракции из областей развития кислых горных пород уменьшается. Процентное содержание группы "базитовых" минералов достигает 70%.

При корреляции сводного "наземного" разреза снатольской свиты и разрезов параметрических скважин, можно выделить 2 этапа, характеризующиеся увеличением сноса обломочного материала из питающих провинций, представленных породами кислого состава. В образцах из "наземных" разрезов, количество минералов-индикаторов кислых пород достигает в пиковых значениях 38– 40%, в образцах керна из Хромовских скважин – 50%, Рассошинской – 39%, Средне-Рассошинской – 63%.

Анализ минерального осстава тяжелой фракции показал, что в среднеэоценовое время существовали, по меньшей мере, две питающие провинции, поставлявшие обломочный материал в формирующийся Западно-Камчатский осадочный бассейн. Доминировал снос терригенного материала с разрушающихся комплексов основных пород. Второстепенную роль играл снос терригенного материала из областей размыва, сложенных преимущественно кислыми породами.

МОРФОЛОГИЯ КРИСТАЛЛОВ И U-Pb-ИЗОТОПНЫЙ ВОЗРАСТ ОБЛОМОЧНОГО ЦИРКОНА

Детальные исследования детритового циркона включали в себя изучение морфологии зерен и LA-ICP-MS датирование.

Морфология кристаллов обломочного циркона. Исследовалась фракция размерностью -0.07 мм, наиболее представительная с точки зрения сохранения кристаллических форм циркона. В пробах установлены две генерации циркона: окатанные, угловато-окатанные зерна и короткопризматические кристаллы со сглаженными вершинами и ребрами малинового и насыщенно-розового цвета и идиоморфные бесцветные и слабоокрашенные кристаллы, среди которых выделяются различные морфологические типы. Малиновые зерна встречались крайне редко, поэтому подсчеты проводились только по бесцветным. Содержание пригодных для подсчета (неокатанных) зерен составляет в среднем по всем пробам около 35%, полуокатанных – около 45%, и окатанных – около 20%.

Для удобства подсчета классификация типов циркона, приведенная в работе [Pupin, 1980], была модифицирована. В группы объединялись морфологические типы со сходным строением

ластях сноса обломочного материала, поступаюшего в Западно-Камчатский бассейн, преобладали субщелочные (известково-щелочные) гранитоиды при незначительной доле высокоглиноземистых мусковитовых гранитов. Зависимость морфологии кристаллов циркона от условий формирования и типа гранитов, по [Belousova et al., 2006], показана на рис. 10. Для U-Pb-изотопного датирования обломочных цирконов были выбраны 2 образца: образец SN-1 из нижней части Точилинского разреза (см. рис. 2, I) и образец AS-06-10 из разреза, обнажающегося в долине реки Рассошина (см. рис. 2, VI). По своей стратиграфической позиции обр. SN-1 расположен в разрезе выше образца AS-06-10. Из этих образцов были выделены монофракции цир-

[Рожкова и др., 2012].

кона. При подготовке лабораторной шашки зерна обломочного циркона наносились рядами на двустороннюю липкую ленту с помощью шаблона из пленки. В центре шашки устанавливались кристаллы стандартов SL2 с возрастом 563 млн лет [Gehrels et al., 2008]. Поверхность шашки с зернами циркона полировалась. Катодолюминесцентные изображения были получены в микроаналитическом центре Стенфордского университета на сканирующем электронном микроскопе JEOL JSM 5600 с катодолюминесцентным детектором. U-Pb датирование проводилось методом лазерной абляции на масс-спектрометре с индуктивно связанной плазмой (LA-ICP-MS) в лаборатории Laser Chron Center в университете Аризоны (г. Тусон, США) [Gehrels et al., 2008; Gehrels, 2011].

без учета коэффициента удлинения. каждая из

объединенных групп носит название по крайнему

левому морфологическому типу в классифика-

ции, пример полученного распределения морфо-

типов для пробы SN-01 приведен на рис. 9. Под-

счет производился по 100-250 зернам в зависи-

мости от содержания циркона в пробе. В

результате установлено, что в пробах преоблада-

ют пять морфологических типов циркона – H, L4, S9, S15, S25. Кристаллы морфологического

типа Н характерны для высокоглиноземистых му-

сковитсодержащих гранитов s-типа; L4 для ги-

бридных (контаминированных) монцонитов и

щелочных гранитов; S9 для контаминированных

субшелочных и шелочных гранитов: S15 для суб-

шелочных и шелочных гранитов i-типа; S25 для

шелочных гранитоидов и толеитовых гранитов

i-типа [Belousova et al., 2006]. Содержание цирко-

на других морфотипов крайне незначительно. Де-

тально полученные результаты анализа морфоло-

гии кристаллов обломочного цирконов из сред-

неэоценовых песчаников приведены в статье

Таким образом, в среднезоценовое время в об-

Из каждого образца было датировано по 100 зерен. По катодолюминесцентным изображени-

Рис. 11. Распределения возрастов обломочного циркона. а – в интервале 0–3500 млн лет, б – в интервале 0–500 млн лет, *n* – число проанализированных зерен.

ям для датирования выбирались зерна без включений и видимых нарушений. Прожиг циркона осуществлялся на установке New Wave UP193HE Excimer Laser (длина волны 193 нм), диаметр получаемого кратера 30 мкм. Изотопы U, Th, и Pb измерялись одновременно. Каждое измерение проводилось таким образом: 15 с. – один замер с выключенным лазером, 15 с. – прожиг лазером и трилцатисекундная задержка, чтобы очистить предыдущий образец и подготовиться к следующему анализу. Глубина прожигаемого кратера составляла ~15 мкм. Для каждого анализа ошибка в определении ²⁰⁶Pb/²³⁸U и ²⁰⁶Pb/²⁰⁴Pb составляла ~1-2% (±2 σ). Ошибки в измерении ²⁰⁶Pb/²⁰⁷Pb и ²⁰⁶Pb/²⁰⁴Pb также составляли ~ 1-2% ($\pm 2\sigma$), для зерен, возраст которых более 1 млрд лет ошибка была меньше, более значимой она была для молодых зерен из-за низкой интенсивности сигнала ²⁰⁷ Pb. Концентрации урана и тория были откалиброваны по отношению к стандарту циркона SL2 [Gehrels et al., 2008], содержащего ~ 518 ppm U и 68 ppm Th. Для анализа в расчет принимались только конкордантные зерна, т.е. зерна с дискордантностью менее 10%. Построение графиков с конкордией проводилось с использованием программы ISOPLOT [Ludwig, 2003].

Датирование обломочного циркона показало, что в изученных песчаниках присутствует циркон различного возраста (рис. 11). В образцах в значимом количестве (22–33%) присутствуют зерна циркона докембрийского возраста с четко выраженным пиком между 2.0–1.8 млрд лет. Зерна цирконов палеозойского возраста редки (5–11%) и образуют значимый пик 496 млн лет только в образце 06AS-10. Значительно преобладают цирконы мезозойского возраста (52–68%) с пиком 118–70 млн лет. Кайнозойские цирконы также присутствуют (4–5%).

Для сравнения на рис. 11 приведены данных по обломочному циркону из палеогеновых терригенных отложений укэлаятского флиша [Соловьев, 2008] и из современных песков реки Амур [Safonova et al., 2010]. Во всех образцах из Охотоморского региона присутствуют единичные зерна циркона архейского возраста, а зерна с возрастом 2.0-1.8. млрд лет образуют значительный пик (14-33%), только в осадках реки Амур, их содержание ниже (8%). Источником раннепротерозойского циркона, по-видимому, были породы Сибирского кратона или с блоков, связанными с Сибирью (Авековский, Охотский, Омолонский). для которых известен пик магматической активности около 1.9 млрд лет, [Rosen, 2002]. Современными исследованиями установлен глобальный эпизод формирования континентальной коры 2.0-1.8 млрд лет назад, во время которого сформировался суперконтинент Коламбия [Safonova et al., 2010]. Циркон палеозойского воз-

раста не присутствует в значимых количествах. Циркон мезозойского возраста (~250–66 млн лет) встречается в наиболее значимых количествах (~52-74%). Циркон древнее 110 млн лет присутствует в большом объеме только в отложениях Амура (~47%), а в остальных образцах имеет гораздо меньшее значение (~10-25% возрастов ~250-110 млн лет). Наиболее значимым является пик. близкий по возрасту известково-шелочному магматизму Охотско-Чукотского вулканогенного пояса [Акинин и др., 2011] - 106-77 млн лет (см. рис. 11). Более молодые зерна циркона в образцах Западно-Камчатского прогиба единичны (см. рис. 11) и, по-видимому, связаны с синхронным вулканизмом Кинкильского вулканического пояса. Четкий раннеэоценовый пик проявлен только в песчаниках укэлаятского флиша.

ПАЛЕОГЕОГРАФИЯ СНАТОЛЬСКОГО (СРЕДНИЙ ЭОЦЕН) ВРЕМЕНИ ДЛЯ ЗАПАДНОЙ КАМЧАТКИ

Для объяснения особенностей осадконакопления в снатольское время, двучленного строения сформировавшейся толщи были построены палеогеографические схемы для раннего этапа накопления грубообломочной толщи и для позднего этапа накопления псаммитового материала. На начальном этапе формирования Западно-Камчатского бассейна осадконакопление происходило в межгорных долинах и предгорьях, детально и доказательно об этом написано в работах [Григоренко, 1981, 2011]. Основными типами отложений являются осадки пролювиальных конусов и горных рек. Состав и возраст галечного материала конгломератов, свидетельствуют о близости источников сноса. Базальные конгломераты Западно-Камчатского осадочного бассейна детально описаны в работе [Хисамутдинова и др., 2015]. Среди обломков в конгломератах доминируют вулканиты основного, среднего, реже кислого состава. В подчиненном количестве встречаются фрагменты терригенных пород. Возраст галек, определенный методом K-Ar датирования $(51.5 \pm 3.5, 51.2 \pm 2.0, 35.5 \pm 6.5, 87 \pm 3.5, 50 \pm 1.5,$ 57.3 ± 2 млн лет), свидетельствует о наличии двух разновозрастных источников сноса – позднемелового и раннезоценового. По-видимому, основными поставщиками обломочного материала были фрагменты вулканической островной дуги, расположенные на востоке от формирующегося бассейна [Соловьев, Шапиро, 2011] и палеогеновые вулканические комплексы, окаймляющие его с востока и расположенные в центральной его части (рис. 12а).

Позже грубообломочная толща сменяется песчаниками, происходит трансгрессия моря [Гладенков и др., 1991, 1997]. Источники сноса меняются, теперь в бассейн поступает мелкообломоч-

Рис. 12. Палеогеографические схемы центральной части Западно-Камчатского осадочного бассейна.

а – ранний эоцен, б – средний эоцен.

ный материал, перемещение которого, согласно замерам косой слоистости, происходило с севера и северо-востока. Основными питающими провинциями, поставлявшими обломочный материал в это время, являлись Охотско-Чукотский вулканический пояс (север-северо-запад), комплексы Ачайваям-Валагинской островной дуги, расположенной на востоке бассейна, вулканиты Кинкильского пояса и Утхолокского полуострова. Возможно, часть обломочного материала в южных частях бассейна накапливалась за счет размыва комплексов Срединного хребта Камчатки, выведенного в область эрозии к среднему эоцену (см. рис. 12б).

ЗАКЛЮЧЕНИЕ

Песчаники среднеэоценовой снатольской свиты относятся к незрелым грауваккам кварцполевошпатового и полевошпат-кварцевого состава по классификации [Шутов, 1975]. Среди обломочных зерен пород преобладают продукты размыва вулканических комплексов: фрагменты вулканических стекол и пород с фельзитовой, лейстовой, реже микроклиновой структурой основной массы. Состав песчаников существенно не меняется по направлению от кровли к подошве толщи, постоянным он остается и по латерали.

На диаграмме [Dickinson et al., 1983], характеризующей геодинамическую позицию источников сноса, фигуративные точки попадают в поля смешанного источника, большая часть точек ложится в поле "островных дуг" с разным уровнем эрозионного среза, часть точек попадает в поле разрушающихся орогенных построек. Это подтверждается отношением щелочных оксидов и кремнекислотности пород, по [Nesbitt, Young, 1982], формируют область точек, указывающих на такую же геодинамическую позицию размываемых комплексов.

Минеральный состав тяжелой фракции песчаников свидетельствует о наличии двух разных по составу размываемых пород источников сноса: комплексов магматических и вулканических пород кислого состава и магматических пород основного состава.

Морфология кристаллов обломочного циркона свидетельствует о размыве преимущественно субщелочных (известково-щелочные) гранитоидов при незначительной доле высокоглиноземистых мусковитовых гранитов. Этот вывод согласуется с результатами U-Pb-изотопного датирования циркона из песчаников снатольской свиты, основным источником которых был Охотско-Чукотский вулканогенный пояс, где известны значительные объемы известково-щелочных магматических пород, включая контаминированные гранитоиды мантийно-корового происхождения [Акинин и др., 2011].

Исследования выполнены при финансовой поддержке РФФИ (гранты № 13-05-00485_а, № 12-05-31299 мол_а) и научной школы (НШ 2981.2014.5).

СПИСОК ЛИТЕРАТУРЫ

Акинин В.В., Миллер Э.Л. Эволюция известково-щелочных магм Охотско-Чукотского вулканогенного пояса // Петрология. 2011. Т. 19. № 3. С. 249–290.

Белонин М.Д., Григоренко Ю.Н., Маргулис Л.С. и др. Разведочный потенциал Западной Камчатки и сопредельного шельфа (нефть и газ). СПб.: Недра, 2003. 120 с.

Богданов Н.А., Чехович В.Д. О коллизии Западно-Камчатской и Охотоморской плит // Геотектоника. 2002. № 1. С. 72–85.

Богданов Н.А., Добрецов Н.Л. Охотское океаническое вулканическое плато // Геология и геофизика. 2002. Т. 43. № 2. С. 97–110.

Буданцев Л.Ю. Раннепалеогеновая флора Западной Камчатки // Труды БИН РАН. Вып. 22. СПб.: Наука, 2006. 480 с.

Гладенков Ю.Б., Шанцер А.Е., Челебаева А.И. и др. Нижний палеоген Западной Камчатки (стратиграфия, палеогеография, геологические события) // Труды ГИН РАН. Вып. 488. М.: ГЕОС, 1997. 367 с.

Гладенков Ю.Б., Синельникова В.Н., Челебаева А.И., Шанцер А.Е. Биосфера – экосистема – биота в прошлом Земли. Экосистемы кайнозоя Северной Пацифики. Эоцен–олигоцен Западной Камчатки и сопредельных районов. М.: ГЕОС, 2005. 480 с.

Гладенков Ю.Б., Шанцер А.Е., Челебаева А.И., Синельникова В.Н. Геологические события раннего палеогена Западно-Камчатского региона // Стратиграфия. Геол. корреляция. 1998. Т. 6. № 5. С. 71–84.

Гладенков Ю.Б., Синельникова В.Н., Шанцер А.Е., и др. Эоцен Западной Камчатки // Труды ГИН РАН. Вып. 467. М.: Наука, 1991. 184 с.

Григоренко Ю.Н. Граувакковая формация Западной Камчатки // Литолого-петрографические исследования в нефтяной геологии // Труды ВНИГРИ. 1969. Вып. 279. С. 58–79.

Григоренко Ю.Н. Палеоцен-эоценовый граувакковый комплекс тыловых прогибов Притихоокеанской окраины (строение и формирование). СПб.: ВНИГРИ, 2011. 322 с.

^{1–3 –} палеогеографические обстановки: 1 – суша, 2 – суша, временами заливаемая морем, 3 – мелкое море; 4–5 – типы осадков: 4 – песчаные илы, 5 – конгломераты; 6–8 – петрофонд: 6 – вулканические породы основного, среднего и кислого составов, 7 – кремни и кремнистые сланцы, 8 – гранитоиды; 9 – реки; 10 – направления переноса обломочного материала; 11 – надвиг.

Григоренко Ю.Н. Типы и ассоциации обломочных пород в палеогеновых свитах Западной Камчатки // Кайнозой Дальнего Востока // Труды ВНИГРИ. 1981. С. 63–91.

Дмитриева Т.В. Прикладные аспекты микропалеонтологии на примере изучения фораминифер из продуктивных отложений верхнего палеогена и неогена Западной Камчатки // Нефтегазовая геология. Теория и практика. 2007. http://www.ngtp.ru/rub/2/027.pdf

Зинкевич В.П., Константиновская Е.А., Цуканов Н.В. и др. Аккреционная тектоника Восточной Камчатки. М.: Наука, 1993. 272 с.

Зоненшайн Л.П., Кузьмин М.И., Натапов Л.М. Тектоника литосферных плит территории СССР. Т. 2. М.: Наука, 1990. 352 с.

Карта полезных ископаемых Камчатской области. Масштаб 1 : 500000 / Под ред. Литвинова А.Ф., Патока М.Г., Марковского Б.А. СПб.: ВСЕГЕИ, Камчатприродресурс, 1999.

Копченова Е.В. Минералогический анализ шлихов и рудных концентратов. М.: Недра, 1979. 247 с.

Малиновский А.И., Маркевич П.В. Тяжелые обломочные минералы островодужных комплексов Дальнего Востока // Тихоокеанская геология. 2007. Т. 26. № 1. С. 81–93.

Моисеев А.В., Соловьев А.В. Новые данные о деформациях Третичных отложений Западной Камчатки (Тигильский район) // Геология и разведка. 2010. № 1. С. 13–19.

Объяснительная записка к тектонической карте Охотоморского региона масштаба 1 : 2500000 / Под ред. Богданова Н.А., Хаина В.Е. М.: ИЛОВМ РАН, 2000. 193 с.

Отчет по теме "Обработка материалов бурения параметрических скважин Тигильского района Западной Камчатки" / Отв. исполнитель Л.В. Гома. РФГФ, 1986.

Парфенов Л.М., Натапов Л.М., Соколов С.Д., Цуканов Н.В. Террейны и аккреционная тектоника Северо-Востока Азии // Геотектоника. 1993. № 1. С. 68– 78.

Решения рабочих Межведомственных региональных стратиграфических совещаний по палеогену и неогену восточных районов России — Камчатки, Корякского нагорья, Сахалина и Курильских островов. М.: ГЕОС, 1998. 146 с.

Рожкова Д.В., Соловьев А.В., Хисамутдинова А.И., Ипатьева И.С. Информативность обломочных цирконов при реконструкциях источников сноса на примере палеогена Западно-Камчатского бассейна // Бюлл. МОИП. Отдел геол. 2012. Т. 87. Вып. 6. С. 57–62.

Серова М.Я. Фораминиферы и биостратиграфия верхнего палеогена Северной Пацифики // Труды ПИН РАН. Т. 279. М.: Наука, 2001. 215 с.

Соколов С.Д. Аккреционная тектоника Корякско-Чукотского сегмента Тихоокеанского пояса. М.: Наука, 1992. 182 с.

Соловьев А.В. Изучение тектонических процессов в областях конвергенции литосферных плит: методы трекового датирования и структурного анализа // Тр. ГИН РАН. Вып. 577. М.: Наука, 2008. 319 с.

Соловьев А.В. Тектоника Западной Камчатки по данным трекового датирования и структурного анализа //

Западная Камчатка: геологическое развитие в мезозое. М.: Научный мир, 2005. С. 163–194.

Соловьев А.В., Шапиро М.Н. Эоценовая геодинамика северо-восточной окраины Азии (Южная Корякия, Камчатка) // Материалы Всероссийской конференции с международным участием "Геологические процессы в обстановках субдукции, коллизии и скольжения литосферных плит". Владивосток, 2011. С. 132– 134.

Схема тектонического районирования. Дальневосточный федеральный округ, Камчатский край. СПб.: ВСЕГЕИ, 2001. http://vsegei.ru/ru/info/gisatlas/dvfo/kam-chatka/tecton_rai.jpg

Тильман С.М., Богданов Н.А. Тектоническая карта Северо-Востока Азии. Объяснительная записка. М.: Институт литосферы, 1992. 54 с.

Ханчук А.И. Эволюция древней сиалической коры в островодужных системах восточной Азии. Владивосток: ДВНЦ АН СССР, 1985. 138 с.

Хисамутдинова А.И., Захаров Д.О., Соловьев А.В. Источники сноса базальных конгломератов Западно-Камчатского осадочного бассейна: возраст и вещественный состав галек // Тихоокеанская геология. 2015. № 3. С. 1–20.

Чейз Ф. Количественно-минералогический анализ шлифов под микроскопом. М.: ИЛ, 1963. 126 с.

Чехович В.Д. Тектоника и геодинамика складчатого обрамления малых океанических бассейнов. М.: Наука, 1993. 272 с.

Шванов В.Н. Петрография песчаных пород (компонентный состав, систематика и описание минеральных видов). Л.: Недра, 1987. 269 с.

Шутов В.Д. Минеральные парагенезисы граувакковых комплексов // Труды ГИН АН СССР. Вып. 278. М.: Наука, 1975. 112 с.

Belousova E.A., Griffin W.L., O'Reily S.Y. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from Eastern Australian granitoids // J. of Petrology. 2006. V. 47. N $_{2}$ 2. P. 329–353.

Dickinson W.R., Beard L.S., Brakenridge G.R. et al. Provenance of North American Phanerozoic sandstones in relation to tectonic setting // Geological Society of America Bulletin. 1983. V. 94. P. 222–235.

Gehrels G.E., Valencia V.A., Ruiz J. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry // Geochemistry, Geophysics, Geosystems. 2008. V. 9. Q03017, doi:10.1029/2007GC001805

Gehrels G.E. Detrital Zircon U-Pb Geochronology: Current Methods and New Opportunities // Recent Advances in Tectonics of Sedimentary Basins / Eds C. Busby, A. Azor. Wiley-Blackwell, 2011. P. 47–62.

Hourigan J.K., Brandon M.T., Soloviev A.V. et al. Eocene arc-continent collision and crustal consolidation in Kam-chatka, Russian Far East // American J. of Science. 2009. V. 309. P. 333–396.

Konstantinovskaia E.A. Arc-continent collision and subduction reversal in the Cenozoic evolution of the Northwest Pacific; an example from Kamchatka (NE Russia) // Tectonophysics. 2001. V. 333. P. 75–94. *Ludwig K.R.* User's manual for Isoplot 3.0: A geochronological toolkit for Microsoft Excel // Berkeley Geochronology Center, Berkeley, California. 2003. Spec. Pub. 4. 71 p.

Mange M.A., Otvos E.G. Gulf coastal plain evolution in West Louisiana: Heavy mineral provenance and Pleistocene alluvial chronology // Sediment. Geology. 2005. V. 182. P. 29–57.

Morton A.C. Heavy minerals in provenance studies // Provenance of Arenites / Ed. G.G. Zuffa. Dordrecht: Reidel, 1985. P. 249–277.

Morton A.C., Hallsworth C.R. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones // Sediment. Geology. 1994. V. 90. P. 241–256.

Morton A.C., Hallsworth C.R. Processes controlling the composition of heavy mineral assemblages in sandstones // Sediment. Geology. 1999. V. 124. P. 3–29.

Morton A.C., Whitham A.G., Fanning C.M. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data // Sediment. Geology. 2005. V. 182. P. 3–28.

Nesbitt H.W., Young G.M. Petrogenesis of sediments in the absence of chemical weathering, effects of abrasion and sorting on bulk composition and mineralogy // Sedimentology. 1982. V. 43. P. 341–358.

Nesbitt H.W., Young G.M. Prediction of some weathering trends of plutonicand volcanic rocks based on thermodynamic and kinetic considerations // Geochim. et Cosmochim. Acta. 1984. V. 48. P. 1523–1534.

Nokleberg W.J., Parfenov L.M., Monger J.M.H. et al. Phanerozoic tectonic evolution of the circum-north Pacific // US Geological Survey. Open File. 1998. Report 98-754. 125 p.

383

Pupin J.P. Zircon and granite petrology // Contribution to Mineralogy and Petrology. 1980. V. 73. P. 207–220.

Rosen O.M. Siberian craton – a fragment of a Paleoproterozoic supercontinent // Russian J. of Earth Sci. 2002. V. 4. P. 103–119.

Roser B.P., Korsch R.J. Determination of tectonic setting of sandstone-mudstone suites using SiO₂ content and K₂O/Na₂O ratio // J. of Geology. 1986. V. 94. P. 635–650. *Safonova I., Maruyama S., Hirata T. et al.* LA ICP MS U-Pb ages of detrital zircons from Russia largest rivers: Implications fro major granitoid events in Eurasia and global episodes of supercontinent formation // J. of Geodynamics. 2010. V. 50. P. 134–153.

Stavsky A.P., Chekhovich V.D., Kononov M.V., Zonenshain L.P. Plate tectonics and palinspastic reconstruction of the Anadyr-Koryak region, northeast USSR // Tectonics. 1990. V. 9. P. 81–101.

Watson B.F., Fujita K. Tectonic evolution of Kamchatka and the Sea of Okhotsk implications for the Pacific Basin / Ed. D.G. Howell // Tectonostratigraphic terranes of the Circum-Pacific region: Houtson, TX, Circum-Pacific Council for Energy and Mineral Resources. 1985. P. 333–348.

Worrall D.M. Tectonic history of the Bering sea and the evolution of the tertiary strike-slip basins of the Bering shelf // Geological Society of America. 1991. Special paper 257. 120 p.