КРАТКИЕ СООБЩЕНИЯ

УДК 551.248.2 (571.511)

А.Е. Голдырев, О.С. Юрченко

НОВЕЙШАЯ РАЗЛОМНАЯ И БЛОКОВАЯ ТЕКТОНИКА ХУТУДИНСКОЙ ПЛОЩАДИ МИНИНСКОГО РАЙОНА (СЕВЕРО-ЗАПАДНЫЙ ТАЙМЫР)

Во время полевого сезона 1998 г. на Хутудинской площади (Северо-Западный Таймыр) проводились геоморфологические и структурные исследования с попутным сбором обширного тектонофизического материала: было сделано более 600 замеров трещиноватости, замерены 20 зеркал и борозд скольжения, 30 жил, 15 даек, а также кливаж и сланцеватость; дешифрировались аэрофотоснимки (АФС) и фотомонтажи на предмет выявления разрывных нарушений с последующей их заверкой на местности. Выделение разрывных нарушений геоморфологическим методом проводилось по методике Н.П.Костенко, в результате дешифрирования топографической основы построена блоковая неотектоническая карта, которая позволила составить схему кинематических типов новейших разрывных нарушений.

В геологическом строении района принимают участие стратифицированные образования, формировавшиеся от позднего протерозоя (рифея) до среднего палеозоя (PR₂-S) [1, 6, 7]. Интрузивные образования представлены породами Таймырского и Быррангского интрузивных комплексов. В тектоническом отношении район является частью Таймырской складчатой области и охватывает Карское сводовое поднятие и пограничную флексуру Таймырского прогиба. В пределах района выделяются два структурных этажа: нижний протерозойский (PR) и верхний палеозойско-нижнемезозойский (V-T₁). В ориентировке разрывных нарушений доминируют северо-восточное (более древнее) и северо-западное (молодое) направления. В пределах района выделяются два крупных разлома: Диабазовый (к северу от рек Спокойная и Каверза) и Хутудинский (вдоль реки Хутудабигай).

Анализ поясного распределения трещин в зоне динамического влияния разломов проводился по методике В.Н. Даниловича [5], предназначенной для определения направления смещения по разрывному нарушению при помощи выделяемых поясов трещиноватости. На диаграммах выделяются пояса трещиноватости. На диаграммах выделяются пояса максимумов и условно принимаются за пояс трещиноватости, по сетке Вульфа проводится плоскость пояса и отстраивается его полюс. Затем на сетку выносится простирание разлома. Ось пояса (*B*) перпендикулярна движению по сместителю. После нанесения на стереограмму простирания разрыва (*MN*), определенного любыми методами, поднимается дуга большого круга *NBM*, проходящая через полюс пояса и концы разлома на диаграмме и являющаяся плоскостью сместителя. Точка пересечения пояса трещиноватости *PP1* и плоскости разрыва *NBM* (точка *K*) является выходом на верхнюю полусферу линии движения по разрыву, а направление *KO* — ориентировкой этой линии в пространстве.

Поясной парагенез образуется по классической схеме В.Н. Даниловича. За счет некоторого разворота ранее сформированных трещин по отношению к более поздним трещинам аналогичных систем в направлении движения по сместителю трещины формируются как сколовые сопряженные [2]. В результате максимумы, отражающие пояса на диаграммах массовых замеров трещиноватости, должны приобретать ярко выраженную асимметрию за счет наличия преимущественного разброса трещин. Но для поясов данного типа является обязательным наличие однонаправленного разброса у всех составляющих их максимумов. При этом направление такого разброса должно совпадать с направлением тектонического движения в зоне разлома [3].

В основу метода изучения деформаций новейшего этапа структурно-геоморфологическим дешифрированием топографических карт Н.П. Костенко [8] положен анализ топографической основы исследуемой местности. В ходе такого анализа проводится выделение вертикальных разрывных нарушений по различным геоморфологическим признакам.

Линеаменты выделяются по прямолинейным участкам временных и постоянных водотоков, по обобщенным очертаниям меандров рек, прямолинейным участкам береговых линий и оснований склонов поднятий. Результатом такого анализа является построение карты блоковой неотектоники [4], по которой строятся геоморфологические профили с преувеличенным вертикальным масштабом. В ходе анализа профилей выявляются поверхности выравнивания, определяются число эрозионных циклов и их интенсивность.

В геоморфологическом отношении район делится на две области. Первая область (выше нулевой отметки) находится в восточной части рассматриваемого района, вторая (ниже нулевой отметки) — в юго-западной и северо-западной частях района.

Северная часть района характеризуется сравнительно быстрым повышением высот от нулевых отметок до 30—60 м. Большая часть территории

0 25 50 75 100 150 >150m 1 2 3 4 5 6

Рис. 1 Карта блоковой неотектоники Хутудинской площади Мининского района (северо-западный Таймыр): 1 — 6 — амплитуды блоковых поднятии

имеет высоты от 25 до 100 м. на этом фоне выделяются более приподнятые участки с высотами свыше 100 м, занимающие северо-восточное положение, где фиксируется юго-западная -часть крупного конэрозионного поднятия с высотами, превышающими 150 м. В местах врезов крупных рек в развивающееся поднятие можно встретить такие формы рельефа, как каньоны. К западу и юго-западу высоты постепенно уменьшаются, рельеф выравнивается

Южная часть района отличается гораздо более спокойным и выровненным рельефом. Средние высопы достигают здесь 30—40 м, на их фоне выделяется локальное линейное поднятие Синей гряды, отражающее серию субпараллельных, сильно сближенных даек диабазов. В пределах Синей гряды, имеющей запад-юго-западное простирание, высоты достигают 60—70 м.

По геоморфологическим профилям и поверхностям выравнивания на исследуемой территории было выделено пять этапов воздымания. По результатам дешифрирования топографической карты построена блоковая карта района фис. 1).

Рис. 2. Розы-диаграммы простираний разрывных нарушений. выделенных по прямолинейным участкам: *а* — и обобщенным очертаниям меандр рек; *б* — и по очертаниям береговых ЛИНИЙ: *в* оснований новейших блоковых поднятий

Анализируя максимумы на розах-диаграммах (рис. 2), можно сделать вывод о том, что на неотектоническом этапе преобладают три основных направления, по которым развиваются разрывные нарушения: 1) север-северо-западное (максимумы 310— 350°); 2) восток-северо-восточное (максимумы 40— 60°); 3) субширотное (максимумы 80—90°).

Большая часть разрывных нарушений представляет собой новообразованные разрывы, но некоторые являются возобновленными. Следует отметить, что возобновленные разрывные нарушения по большей части соответствуют максимумам, характерным для данного района.

В результате статистического анализа тектонофизических данных по методике В.Н. Даниловича и О.И. Гущенко получены данные о возможных новейших подвижках по плоскостям разрывных нарушений, выявленных в ходе полевых работ и построения блоковой неотектонической карты. Поля напряжений, под влиянием которых сформировались изученные разрывные нарушения, были условно разделены на локальные и региональные.

По данным полевых и камеральных исследований составлена схема кинематических типов разрыв-

Рис. 3. Карта разломной тектоники Хутудинской площади Мининского района: *1* — взбросы, взбросо-сдвиги, сбросы и сбросо-сдвиги, выявленные непосредственно в процессе геологического картирования; *2* — сбросо-сдвиги (а — установленные комплексными методами; *б* — предполагаемые).

Диаграммы поясного распределения трещин для Зимнего (Л), Маленького (Б), Хутудинского (В, Г, Д, Ж), Рыбнинского (Е), Диабазового (Я, К), Рукавнинского (З) разломов. РР — пояс трещиноватости; Р — полюс пояса трещиноватости; МN — плоскость разлома; R — полюс разлома; КО — направление перемещения в плоскости разлома

ных нарушений (рис. 3) и выявлены две главные системы разрывов. Первая система совпадает с общим северо-восточно—юго-западным таймырским простиранием структур, например надвиги Хутудинский (рис. 3, *B*, *Г*, *Д*, *Ж*) и Диабазовый (рис. 3, *И*, *К*), и, вероятно, соответствует протяженным разрыв-

рывов (поле напряжения с субмеридиональным простиранием оси сжатия и вертикальным положением оси растяжения).

Заключение. Таким образом, изучение поясного распределения трещиноватости с параллельным гео-

ным нарушениям взбросо-надвигового характера с падением плоскости сместителя на северсеверо-запад под довольно крутыми углами (60—80°).

Вторая система разрывных нарушений — диагональная: система с северо-западным простиранием характеризуется разрывами с падением плоскости сместителя как на юго-запад (см. рис. 3, *A*, *E*), так и на северо-восток (см. рис. 3, *Б*, *3*).

Система с северо-восточным простиранием также характеризуется двояким падением плоскостей сместителя: север-северозападное (320—330°) и юго-восточное (150—160°). Вероятно, эта система разрывов сформировалась в процессе складчатости и была подновлена на новейшем этапе.

Таким образом, выявлены, как минимум, три этапа тектонического развития разрывных нарушений района: 1) складкообразование в процессе формирования Таймырской складчатой области (региональное поле напряжения с северо-западнымюго-восточным простиранием оси сжатия и северо-восточным-юго-западным простиранием оси растяжения), надвигообразование (региональное поле напряжения с северо-западным-юго-восточным простиранием оси сжатия и субвертикальным положением оси растяжения) и образование соскладчатых разрывных нарушений; 2) формирование диагональной системы разрывов, в том числе и за счет соскладчатых (региональное поле напряжения с запад-северо-западным-юг-юго-восточным простиранием оси сжатия и север-северо-восточным-юг-югозападным простиранием оси растяжения); 3) формирование в северной части района неотектонического поднятия и обновление бывших соскладчатых разморфологическим анализом в зонах разрывов позволяет выделить три категории обновленных разрывных нарушений и предположить, что их формирование происходило в условиях субмеридионального сжатия, которое на современном этапе является региональным полем напряжения для Северного и Центрального Таймыра. Можно также сделать вывод о том, что преобладающий тип смещений — это сдвиги, унаследовавшие направления последней эпохи активизации. Данные газортутной съемки и геоморфологического анализа, проведенные в центральной части главной гряды гор Бырранга [9], показали, что на этой территории в тылу новейших сдвигов, установленных по геоморфологическим данным, откартированы сектора локальных растяже-

СПИСОК ЛИТЕРАТУРЫ

1. Берниковский В.А. Геодинамическая эволюция Таймырской складчатой области. Новосибирск, 1996.

2. Гзовский М.В. Основы тектонофизики. М, 1975.

3. Гладков А. С. Анализ поясов трещиноватости: новые возможности при картировании различных структур в платформенных отложениях // Структурные парагенезисы и их ансамбли. М., 1997.

4. Голдырев А.Е. Разломная тектоника Хутудинской площади, Северо-Западный Таймыр. М., МГУ. 1999.

5. Данилович В. К Метод поясов в исследовании трещиноватости, связанной с разрывными смещениями. Иркутск, 1961.

ний с высокими значениями содержаний газообразной ртути в приповерхностном слое воздуха, в то время как во фронтальных частях сдвигов эманации ртути минимальны. Таким образом, по независимым исследованиям, в разных частях Таймыра восстановлено региональное сдвиговое поле напряжения с субмеридиональным сжатием.

Наши исследования показывают, что выбранный комплекс методов применим в условиях низкой расчлененности рельефа и слабой обнаженности в арктической тундре. Отметим, что такого рода работы впервые проводились на этой территории, а полученные нами результаты могут служить основой для более детальных исследований.

6. Забияка А.И. Стратиграфия и осадочные формации докембрия Северо-Западного Таймыра. Красноярск, 1974.

7. Забияка А.И., Забияка И.Д., Берниковский В.А и др. Геологическое строение и тектоническое развитие Северо-Восточного Таймыра. Новосибирск, 1986.

8. Костенко Н.П. Геоморфология. М., 1985.

9. Федоров Г.Б. и др. Данные газортугной съемки и геоморфологического анализа в центральной части главной гряды гор Бырранга. СПб., 1999. 20.06.2000